US 7,058,829 B2

1

METHOD AND APPARATUS FOR A
COMPUTING SYSTEM HAVING AN ACTIVE
SLEEP MODE CPU THAT USES THE CACHE

OF A NORMAL ACTIVE MODE CPU

FIELD OF THE INVENTION

The field of invention relates generally to computing
systems; and, more specifically, to a method and apparatus
for a computing system having an active sleep mode.

BACKGROUND

FIG. 1 shows an exemplary depiction of a computing
system 100. According to the computing system design of
FIG. 1, a central processing unit (CPU) 101 (such as a
microprocessor) is used to execute instructions that effec-
tively perform the software routines that are executed by the
computing system 100. The computing system also includes
a graphics controller (which may also be referred to as a
display controller) 104 that provides digital information
(e.g., in the form of bytes of digital data or “words” of digital
data that are wider than 8 bits) to a display unit 105.

The display unit 105 is designed to transform the stream
of digital information provided by the graphics controller
104 into orchestrated analog signals that, when applied to a
display device (such as a liquid crystal display device or a
thin film transistor display device), result in the appearance
of visual subject matter (e.g., a graphical user interface
(GUI)) on the display unit 105. The graphics controller 104
is typically designed to perform numerically intensive func-
tions (e.g., that are used to display fluid motions on the
display device) so as to offload from the CPU 101 the burden
of performing these functions.

In the embodiment of FIG. 1, a memory controller and
bridge unit 102 is coupled to both the graphics controller 104
and the CPU 101. The memory controller and bridge unit
102 may be implemented, for example, with a pair of
semiconductor chips (e.g., a memory controller chip; and, a
bridge chip) or a single semiconductor chip. The bridge
portion of the memory controller and bridge unit 102
effectively acts as a gateway that allows other “I/O compo-
nents” 107, through 107, (e.g., a disk drive, a CD read only
memory (ROM), a networking interface, a diskette drive, a
card interface, etc.) to store information into (or retrieve
information from) the system memory 103. Typically, the
1/0 components share a bus 106 (e.g., a PCI bus) to which
the bridge portion of the memory controller and bridge unit
102 is also coupled.

The bus 106 provides an efficient mechanism for sending
information between the system memory 103 and the /O
components 107, through 107, because each /O component
uses common signal wiring from which the bus 106 is
constructed. The bridge portion of the memory controller
and bridge unit 102 may translate between a pair of buses
(e.g., bus 106 and a second bus (not shown in FIG. 1) that
acts as a third input/output port to the memory controller
portion of the memory controller and bridge unit 102); or,
may simply provide a third/input output port to the memory
controller portion of the memory controller and bridge unit
102.

The memory controller portion of the memory controller
and bridge unit 102 effectively controls the reading and
writing signaling activity (e.g., addressing signals) applied
to the system memory 103. Here, as both the CPU 101 and
the various I/O components 107, through 107, may invoke
the services of the system memory 103 (e.g., in the case of

10

20

40

45

55

2

the CPU 101, for reading instructions or reading/writing
data; or, in the case of an I/O component, for forwarding data
that will be worked upon by the computing system’s soft-
ware), the memory controller portion of the memory con-
troller and bridge unit 102 may effectively arbitrate or
otherwise resolve the contention for the system memory’s
data storage services that may arise between the various /O
components 107, through 107,; and the CPU 101. To the
extent that the graphics controller 104 invokes use of the
system memory 103, the memory controller portion of the
memory controller and bridge unit 102 may also arbitrate its
demands as well.

It is important to point out that other computing system
embodiments are possible; and, as such, the term computing
system, computer and the like are not to be construed as
automatically limited to the exemplary architecture that has
been depicted in FIG. 1. Some exemplary alternative com-
puting system embodiments might entail: 1) coupling the
graphics controller 104 to the processor 101 rather than the
memory controller and bridge unit 102; 2) not having a
graphics controller 104 (e.g., such that the numerically
intensive graphical calculations are performed by the CPU
101); 3) not having an external (off-chip) cache 108 relative
to the CPU 101, etc. Note that the combination of the CPU
101, memory controller 102 and system memory 103 (and
display controller 104 and external cache 108 if they are
implemented) may be referred to as the processing core 109
of the computing system 109.

Mobile computing systems such as laptop computers,
notebook computers, handheld devices (e.g., personal digital
assistants, cellphones, IEEE 802.11 based devices, etc.) are
often battery powered; and, as such, power consumption is
a matter of concern. Typically, the less power consumed by
a mobile computing system, the longer the life of the battery
that powers the computing system. Often, mobile computing
systems are built with a “sleep mode” and/or a “hibernation
mode”. Either of these modes substantially shut down the
activity of the computing system so that battery power is
conserved.

In “sleep mode” the computing system’s “appendages”
outside the processing core 109 (e.g., its display unit 105,
one or more I/O components 107, through 107, are shut
down while its volatile memory within the processing core
19 (e.g., the external cache 108, the system memory 103,
etc.) is kept awake (e.g., by continuing to clock/refresh
and/or otherwise apply power to the cache and the system
memory 103). The CPU 101 may also shut down various
internal units so that the processing of application software
effectively ceases. Sleep mode allows the system to conserve
battery power consumption (because of the shut down of the
appendages and internal CPU units) and also allows the
computing system to rapidly awake because its volatile
memory was never shut down.

In “hibernation mode” the contents of the volatile
memory (e.g., cache and system memory) are first stored to
non volatile memory (e.g., a disk drive); and then, the entire
system is effectively shut down. Here, typically, greater
power savings are realized as compared to the sleep mode
because the volatile memory units are shut down. However,
it takes longer for the system to return from hibernation
mode to its original, normal, active state because the “state”
of the system software at the time hibernation mode was
entered (as represented by the matter that was transferred
from volatile to non volatile memory) needs to be
“reloaded” back into volatile memory (e.g., by reading the
state data from the disk drive and re-storing it back to its
original locations in cache and system memory 103).



